Tag Archive The method of determining the tool clamping force in CNC machining

The method of determining the tool clamping force in CNC machining

When designing the clamping device for NC machining tools, the clamping force must include three factors: the target, the action point and the size of the clamping force. So how to confirm the clamping force of NC machining tools?

1. The point of action of the tool clamping force in NC machining the point of action of the clamping force is a small area of contact between the clamping piece and the workpiece. The problem of selecting the action point is to confirm the position and quantity of the action point of the clamping force when the clamping target has been determined. The choice of the action point of the clamping force is the key factor to reach a good clamping shape. The correct choice of the action point of the clamping force must follow the following principles?

The roughness value of grinding surface is reduced from 2.0 to 1.1 CNC tool

2. The target of the clamping force of the tool in NC machining is related to the basic configuration of the positioning of the workpiece and the target of the external force on the workpiece. The following criteria must be followed when selecting NC tools:

① The target of the clamping force shall be helpful for the stable positioning, and the main clamping force shall face the key positioning base plane.

② The aim of the clamping force should be to reduce the clamping force to reduce the deformation of the workpiece and the working strength.

③ The target of clamping force should be the one with better rigidity of workpiece. Due to the different stiffness of the workpiece in different targets, the deformation of different stressed surfaces is also different due to the size of their contact area. More and more attention should be paid to make the target of clamping force point to the best target of workpiece rigidity when clamping thin-walled parts.

3. CNC machining tools simplify the process flow and reduce the cost of production in some use situations. The surface quality of high-speed milling can be comparable to grinding, and high-speed milling can be directly used as the final finishing process. Therefore, the process flow is simplified, the production cost is reduced, and the economic benefit is considerable.

4. The energy consumption of NC machining tools is low, and the volume of cutting layer material per unit power increases significantly when saving resources for high-speed cutting. For example, aluminum alloy high-speed cutting, spindle speed from 4000 1 /. When the cutting force rises to 20 000, the cutting force drops 30 ^, and the cutting rate of raw material increases 3 times. The material removal rate per unit power can reach 130? 160 (1) compared with 30? Avulsion in common milling). Due to the high removal rate, low energy consumption, the working time of the workpiece